The Dynamic Earth
--------------------------
We tend to think of the ground beneath our feet as solid, steady, and unchanging. But forces all around us are constantly at work shaping Earth's surface—usually at a pace too slow to be noticed but occasionally in cataclysmic fits that leave no doubt about their power. Explore the forces that move and shake our dynamic Earth.
Erosion and Weathering
---------------------------------
---------------------------------
Weathering and erosion slowly chisel, polish, and buff Earth's rock into ever evolving works of art—and then wash the remains into the sea.
The processes are definitively independent, but not exclusive. Weathering is the mechanical and chemical hammer that breaks down and sculpts the rocks. Erosion transports the fragments away.
Working together they create and reveal marvels of nature from tumbling boulders high in the mountains to sandstone arches in the parched desert to polished cliffs braced against violent seas.
Water is nature's most versatile tool. For example, take rain on a frigid day. The water pools in cracks and crevices. Then, at night, the temperature drops and the water expands as it turns to ice, splitting the rock like a sledgehammer to a wedge. The next day, under the beating sun, the ice melts and trickles the cracked fragments away.
Repeated swings in temperature can also weaken and eventually fragment rock, which expands when hot and shrinks when cold. Such pulsing slowly turns stones in the arid desert to sand. Likewise, constant cycles from wet to dry will crumble clay.
Bits of sand are picked up and carried off by the wind, which can then blast the sides of nearby rocks, buffing and polishing them smooth. On the seashore, the action of waves chips away at cliffs and rakes the fragments back and forth into fine sand.
The processes are definitively independent, but not exclusive. Weathering is the mechanical and chemical hammer that breaks down and sculpts the rocks. Erosion transports the fragments away.
Working together they create and reveal marvels of nature from tumbling boulders high in the mountains to sandstone arches in the parched desert to polished cliffs braced against violent seas.
Water is nature's most versatile tool. For example, take rain on a frigid day. The water pools in cracks and crevices. Then, at night, the temperature drops and the water expands as it turns to ice, splitting the rock like a sledgehammer to a wedge. The next day, under the beating sun, the ice melts and trickles the cracked fragments away.
Repeated swings in temperature can also weaken and eventually fragment rock, which expands when hot and shrinks when cold. Such pulsing slowly turns stones in the arid desert to sand. Likewise, constant cycles from wet to dry will crumble clay.
Bits of sand are picked up and carried off by the wind, which can then blast the sides of nearby rocks, buffing and polishing them smooth. On the seashore, the action of waves chips away at cliffs and rakes the fragments back and forth into fine sand.
Plants and animals also take a heavy toll on Earth's hardened minerals. Lichens and mosses can squeeze into cracks and crevices, where they take root. As they grow, so do the cracks, eventually splitting into bits and pieces. Critters big and small trample, crush, and plow rocks as they scurry across the surface and burrow underground. Plants and animals also produce acids that mix with rainwater, a combination that eats away at rocks.
Rainwater also mixes with chemicals as it falls from the sky, forming an acidic concoction that dissolves rock. For example, acid rain dissolves limestone to form karst, a type of terrain filled with fissures, underground streams, and caves like the cenotes of Mexico's Yucatán Peninsula.
Back up on the mountains, snow and ice build up into glaciers that weigh on the rocks beneath and slowly push them downhill under the force of gravity. Together with advancing ice, the rocks carve out a path as the glacier slumps down the mountain. When the glacier begins to melt, it deposits its cargo of soil and rock, transporting the rocky debris toward the sea. Every year, rivers deposit millions of tons of sediment into the oceans.
Without the erosive forces of water, wind, and ice, rock debris would simply pile up where it forms and obscure from view nature's weathered sculptures. Although erosion is a natural process, abusive land-use practices such as deforestation and overgrazing can expedite erosion and strip the land of soils needed for food to grow.
Plate Tectonics
-----------------------
There are a few handfuls of major plates and dozens of smaller, or minor, plates. Six of the majors are named for the continents embedded within them, such as the North American, African, and Antarctic plates. Though smaller in size, the minors are no less important when it comes to shaping the Earth. The tiny Juan de Fuca plate is largely responsible for the volcanoes that dot the Pacific Northwest of the United States.
The plates make up Earth's outer shell, called the lithosphere. (This includes the crust and uppermost part of the mantle.) Churning currents in the molten rocks below propel them along like a jumble of conveyor belts in disrepair. Most geologic activity stems from the interplay where the plates meet or divide.
The movement of the plates creates three types of tectonic boundaries: convergent, where plates move into one another; divergent, where plates move apart; and transform, where plates move sideways in relation to each other.
The plates make up Earth's outer shell, called the lithosphere. (This includes the crust and uppermost part of the mantle.) Churning currents in the molten rocks below propel them along like a jumble of conveyor belts in disrepair. Most geologic activity stems from the interplay where the plates meet or divide.
The movement of the plates creates three types of tectonic boundaries: convergent, where plates move into one another; divergent, where plates move apart; and transform, where plates move sideways in relation to each other.
Convergent Boundaries:-
Where plates serving landmasses collide, the crust crumples and buckles into mountain ranges. India and Asia crashed about 55 million years ago, slowly giving rise to the Himalaya, the highest mountain system on Earth. As the mash-up continues, the mountains get higher. Mount Everest, the highest point on Earth, may be a tiny bit taller tomorrow than it is today.
These convergent boundaries also occur where a plate of ocean dives, in a process called subduction, under a landmass. As the overlying plate lifts up, it also forms mountain ranges. In addition, the diving plate melts and is often spewed out in volcanic eruptions such as those that formed some of the mountains in the Andes of South America.
At ocean-ocean convergences, one plate usually dives beneath the other, forming deep trenches like the Mariana Trench in the North Pacific Ocean, the deepest point on Earth. These types of collisions can also lead to underwater volcanoes that eventually build up into island arcs like Japan.
Divergent Boundaries:-
At divergent boundaries in the oceans, magma from deep in the Earth's mantle rises toward the surface and pushes apart two or more plates. Mountains and volcanoes rise along the seam. The process renews the ocean floor and widens the giant basins. A single mid-ocean ridge system connects the world's oceans, making the ridge the longest mountain range in the world.
On land, giant troughs such as the Great Rift Valley in Africa form where plates are tugged apart. If the plates there continue to diverge, millions of years from now eastern Africa will split from the continent to form a new landmass. A mid-ocean ridge would then mark the boundary between the plates.
Transform Boundaries:-
The San Andreas Fault in California is an example of a transform boundary, where two plates grind past each other along what are called strike-slip faults. These boundaries don't produce spectacular features like mountains or oceans, but the halting motion often triggers large earthquakes, such as the 1906 one that devastated San Francisco.
Very interesting post. Gorgeous pictures!
ReplyDeleteSarah Allen
(my creative writing blog)